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ABSTRACT:

Nursery rhymes, lullabies, or traditional stories are pieces of oral tradition that constitute an integral part of
communication between caregivers and preverbal infants. Caregivers use a distinct acoustic style when singing or
narrating to their infants. Unlike spontaneous infant-directed (ID) interactions, codified interactions benefit from
highly stable acoustics due to their repetitive character. The aim of the study was to determine whether specific com-
binations of acoustic traits (i.e., vowel pitch, duration, spectral structure, and their variability) form characteristic
“signatures” of different communicative dimensions during codified interactions, such as vocalization type, interac-
tive stimulation, and infant-directedness. Bayesian analysis, applied to over 14 000 vowels from codified live inter-
actions between mothers and their 6-months-old infants, showed that a few acoustic traits prominently characterize
arousing vs calm interactions and sung vs spoken interactions. While pitch and duration and their variation played a
prominent role in constituting these signatures, more linguistic aspects such as vowel clarity showed small or no
effects. Infant-directedness was identifiable in a larger set of acoustic cues than the other dimensions. These findings
provide insights into the functions of acoustic variation of ID communication and into the potential role of codified
interactions for infants’ learning about communicative intent and expressive forms typical of language and music.
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I. INTRODUCTION societies start narrating stories as early as after birth as part
of their daily routines, with potential benefits for children’s
word learning and later reading capacities (Montag et al.,
2015).

Codified interactions are particularly appropriate to fos-
ter joint action (Phillips-Silver and Keller, 2012), dyadic
reciprocity (Malloch, 1999; van Puyvelde et al., 2010),
social learning [e.g., Mehr et al. (2016) and Ramirez-
Esparza et al. (2014)] and regulate infants’ emotional state
and arousal levels [e.g., Cirelli et al. (2020) and Corbeil
et al. (2016)]. In light of these benefits, it seems surprising
that, given the rich literature on infant-directed communica-
tion, only a small part of the research focuses on the acoustic
traits of codified interactions. Indeed, the ritualized charac-
ter of codified interactions entails high numbers of repeated
performances resulting in highly stable acoustics over time,
featuring similar tempo and pitch height, even when per-
formed days apart (Bergeson and Trehub, 2002). Such stable
associations between acoustic form and function (situational
context) have high potential to provide an acoustic
“signature” to infants, that is, combinations of acoustic traits
that are more representative of one communicative dimen-
sion than another. The presence of such acoustic signatures
in codified interactions could be a valuable source of infor-
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Communication with preverbal infants constitutes a
challenge for adults. Caregivers have to convey communica-
tive intent and regulate infants’ states without having access
to symbolic common ground and representations. As a con-
sequence, caregivers of young infants often resort to codi-
fied interactions from child-lore and oral tradition, handed
down from generation to generation. Sung and spoken
games, rhymes, lullabies, and stories are part of this rich cul-
tural repertoire which often accompanies children and
parents throughout infancy and early childhood [e.g., Opie
and Opie, (1997)]. Codified interactions become quickly rit-
ualized in mothers’ and infants’ daily routines and are
clearly associated with specific communicative situations
(Trehub and Gudmundsdottir, 2019). For example, care-
givers around the world sing lullabies to infants under dis-
tress or before bedtime to soothe and calm them (Mehr
et al., 2018; Trehub and Trainor, 1998). Playsongs or
rhymes, often accompanied by finger games, tickling or
other body movement, arouse infants and enhance reciproc-
ity in mother-infant interactions during playtime (Rock
et al., 1999; Vlismas et al., 2013). Many parents in Western
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(2017) and Mehr et al. (2018)]. Therefore, the aim of the
present study was to investigate the presence of such acous-
tic signatures, by directly comparing three communicative
dimensions—interactive stimulation (arousing or calm),
vocalization type (speech or song), and infant-directedness
[infant-directed (ID) or adult-directed (AD)].

Previous research has investigated these communicative
dimensions separately from each other, pointing out pitch,
rhythmic, and segmental properties that could indeed form
potential characteristic signatures. Interactive stimulation
refers to the communicative intent of the interaction, that is,
whether a playful and arousing or a calm and soothing per-
formance is intended with the codified interaction. Note that
codified interactions are very clearly defined on one pole of
the arousing/playful—soothing/calm scale because of the
high repetitiveness of the interactions during daily routines.
Pitch contour has been reported as a particularly prominent
trait of this dimension. In ID speech and song, adults from
different cultural and linguistic contexts (i.e., American
English, German, French, Russian, Mandarin) frequently
use steeply ascending intonation or melodic contours during
arousing play situations, while pitch contour composition
clearly differs in calm situations (Falk, 2011; Fernald, 1989;
Papousek et al., 1991). In ID singing, lower pitch associated
with slower tempo is characteristic of soothing songs and
speech, while higher pitch and faster tempo are associated
with play situations (Mehr et al., 2018; Trehub and Trainor,
1998). Infants prefer these situation-specific combinations
of acoustic traits [e.g., slow and low for lullabies, and fast
and high for playsongs, Conrad et al. (2011) and Tsang and
Conrad (2010)]. Currently, no studies are available that have
examined segmental properties of ID communication as a
potential marker of this dimension.

As the second communicative dimension, ID acoustics
can help identifying the type of vocalization, speech, or
song, which caregivers use when addressing infants.
Although this distinction may be evident for older children
and adults [see Tsang et al. (2017)], a distinction between
language and musical sounds seems not to be present at birth
(Kotilahti et al., 2010) and young infants still need to learn
about the differences (Fava et al., 2014). Infants are specifi-
cally attracted to the acoustics of ID song compared to ID
speech between 5 and 10months of age (Nakata and
Trehub, 2004; Tsang et al., 2017), although at other time
points during their first year of life, they have shown similar
interest in either type of vocalization (Corbeil et al., 2013;
Costa-Giomi and Ilari, 2014). Some distinctive features of
ID singing are overall slower tempo, smaller pitch range,
and lower variability of pitches within a vowel compared to
ID speech [e.g., Tsang et al. (2017)]. In addition, ID songs
are more rhythmical than ID speech, and pitch height (i.e.,
mean f0) and tempo vary less in ID singing then in speech
across repetitions (Bergeson and Trehub, 2002). Vowel
space in Western classical singing has been found to be
more compressed than in speech, and vowels as being less
variable (Bradley, 2018). ID singing as well has occasion-
ally been reported to show less variable vowels than ID
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speech (Audibert and Falk, 2018), although further research
is needed to reach conclusive results.

Finally, the third communicative dimension concerns
the differences in pitch, timbre, tempo, and sound character-
istics between infant-directed vs adult-directed communica-
tion [e.g., Farran et al. (2016), Fernald et al. (1989), and
Piazza et al. (2017)]. Pitch and timbral structure in ID com-
munication differs in a major way from AD communication
as caregivers display overall higher pitch, a “smilier” voice
and, at least in spontaneous ID speech, expanded pitch con-
tours compared to AD interactions [e.g., Fernald et al.
(1989), Narayan and McDermott (2016), and Trainor et al.
(1997)]. Temporal structure in both ID speech and song fea-
tures more and shorter phrases as well as longer phrase-final
syllables and pauses, resulting in overall enhanced temporal
hierarchical structure in ID vs AD interactions (Falk and
Kello, 2017; Martin et al., 2016). Vowel sounds display dif-
ferent qualitative characteristics in ID vs AD interactions, at
least in speech. Many studies, although not unequivocally,
have reported more separable focal vowels /a, i, u/ [e.g.,
Burnham et al. (2002) and Kuhl et al. (1997)]. In addition,
larger within-category variability in ID vs AD utterances
throughout the vocalic system has been reported [e.g.,
Martin et al. (2015) and McMurray et al. (2013)].
Generally, these acoustic modifications may serve the pur-
pose to attract and maintain infants’ attention during interac-
tion. Infants prefer to listen to ID compared to AD
utterances, even in the absence of visual or tactile informa-
tion [e.g., Cooper and Aslin (1990) and Masataka (1999)]
and are particularly sensitive to pitch and timbral modifica-
tions [e.g., Fernald and Kuhl (1987)].

Based on these findings, pitch height and variability
should be among the most prominent traits in the acoustic
signatures of infant-directedness, as well as interactive stim-
ulation. Temporal structure and its variability should consti-
tute a prominent marker of vocalization type, that is,
differences between speaking and singing, and, maybe to a
lesser extent, interactive stimulation. Segmental variation,
especially vowel clarity of focal vowels, should most likely
change as a function of infant-directedness, while vowel
variability could be related to any of the three dimensions.

To investigate these issues, we recorded mothers’ per-
formances of codified interactions, a spoken rhyme, a play-
song, a lullaby, and a popular story, in the presence (ID) or
absence (AD) of their 6-month-old infant in a semi-
spontaneous experiment. At this infant age, just before the
onset of independent motion as well as before infant’s
canonical babbling phase/first word production, mothers and
infants fully benefit from codified interactions to sustain
their communication.

Pitch, duration, and vowel quality as well as their vari-
ability were extracted from over 14 000 vowels. Bayesian
regression was used to estimate the probability of an effect
of infant-directedness (ID vs AD interactions), interactive
stimulation (arousing play vs calm listening) and vocaliza-
tion type (spoken vs sung expressions) on these acoustic fea-
tures. These estimates were used as an index of the
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contribution of each acoustic variable to the acoustic signa-
ture of each communicative dimension.

Il. METHODS
A. Participants

Fifteen mothers (mean age =31.8 years, SD =3.2) with
infants aged 6months (9 f, mean age=>5.8 months,
SD =0.9) were recruited in the Munich area, Germany. All
of them were native speakers of German having the habit of
regularly singing with their infants during the last month
(multiple times or at least once per day). They were all
familiar with the songs, rhymes, and the content of the story
they performed during recordings. Infants were born on
term and showed no deficits in hearing, cognitive and motor
development. Mothers gave informed consent and received
a small gift for their participation. Ethical conduct was in
line with the Declaration of Helsinki.

B. Materials and Procedure

Mothers performed two types of spoken (a rhyme, a
read story) and two types of sung (a playsong, a lullaby)
samples of traditional German child-lore. The samples were
very common and representative of early codified interac-
tions in a Western cultural context and chosen for their pos-
sibility to induce different interactive styles. Playful,
sensorimotor arousing interactions (such as rhythmically
bouncing the baby, tickling, moving body parts) eliciting
infants’ vocal participation were expected to occur when
parents performed the spoken rhyme and playsong [e.g.,
Falk (2009) and Trehub and Trainor (1998)], while story
reading, and the lullaby were expected to yield a calm per-
formance without or with significantly fewer motor compo-
nents and infant vocalizations. Mother’s actual ID
performances were documented by the experimenter, in
form of an observational protocol for each recording ses-
sion. These protocols were scored for absence (0) or pres-
ence (1) of above motor components and, in addition, for
presence (0) or absence (1) of infants’ vocal participation in
the performance (cooing, laughing, vocalizing; apart from
crying or fuzziness). Results (displayed in Table I) con-
firmed that playful motor stimulation and infant co-
vocalizations were significantly more frequent during
rhyme/playsong performances vs story/lullaby performances
(Wilcoxon signed ranks; Z =-2.89, p =0.004).

TABLE I. Interactive score rated on a 0-2 scale for each condition, taking
into account motor components in mothers’ performances and infant co-
vocalizations. Mean value are presented with standard deviation in
parenthesis.

Vocalization type

Interactive

stimulation Speech Song
arousing rhyme: 1.0 (0.38) playsong: 1.1 (0.70)
calm story: 0.7 (0.50) lullaby: 0.4 (0.51)
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To obtain comparable words and vowels (/a, i, u/)
across interactions for acoustic evaluation, the names of the
protagonists of the sung and spoken child-lore samples were
replaced by the names “Biba, Babu, Bubi” (see supplemen-
tal material'; note that while “Biba” and “Babu” are real
nonce names in German, “Bubi” is a word that can appear in
the Bavarian dialect as a diminutive form for “small boy”).
Mothers were informed in advance of these changes in order
to prepare and practice for the recording. The recordings
(via an Audio Technica Lavalier Microphone and a Zoom
H4-N recorder at 44.100 Hz and a 24-bit sampling rate) took
place in two sessions (one infant-present, one infant-absent,
counterbalanced across participants) at the mother-infant
dyad’s home (duration between 0.5 and 1.5 h per session), in
the presence of the same female experimenter. In ID ver-
sions, the infant was positioned in close proximity to the
mother (e.g., sitting or lying on the mother’s lap). When the
infant was absent (e.g., sleeping or cared for by another per-
son in another room), the mother read and sang the same
material to the experimenter (AD version).

C. Acoustic analysis

Longer passages containing disfluencies, slips of the
tongue or other errors during speaking and singing were
discarded prior to the analyses. All vowels in the target
words /bi:ba/, /ba:bu/, and /bu:bi/ were pre-segmented using
a semi-automatized procedure, resulting in an initial 17 195
vowels (MAUS) (Schiel, 1999). Please note that, for the sake
of simplicity, all vowels in these words are summarized here
under the labels /a, i, u/ irrespective of their accentuation and
phonological length (in German, the long vowels /a:, i:, u:/,
and the length contrast in general, can only occur in accented
syllables). All audio files were checked for background noises
stemming from the infant, the mother or the technical equip-
ment. After inspection, around 200 vowels were excluded
because of noise interference.

All acoustic analyses were performed using PRAAT
(Boersma, 2001). For each vowel, vowel duration was
extracted from the segmentation. Vowel duration variability
was calculated for each vowel as the normalized difference
between the duration of the vowel and the mean value per
vocalization type (song/speech) and speaker. Pitch height
was determined by extracting fundamental frequency (f0) at
each midpoint of a target vowel (/a, i, u/), using the
autocorrelation-based pitch detection method implemented
in PRAAT (Boersma, 1993). In order to minimize detection
errors, f0 detection was constrained by adjusting the
accepted range of values for each speaker*vocalization
type. Following a procedure inspired by De Looze and Hirst
(2008), adjusted values were defined based on the distribu-
tion of values obtained from a first detection with default
settings. Obvious f0 detection errors (octave jumps) were
discarded based on the visual inspection of the distribution
(~60 vowels). Pitch (fO) variability was computed as the
difference in semitones between the fO value for each vowel
and the mean value per vocalization type and speaker.
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Vowel quality was measured via the F1 and F2 vowel for-
mants (Burg method, five formants with a maximum fre-
quency of 5500 Hz) at the temporal midpoint of the target
vowel and converted to Bark scale. Vowel clarity was
expressed as the Euclidean distance of each vowel to the
vowel space centroid, assuming that larger distance repre-
sents higher vowel clarity [see, e.g., Bradlow et al. (1996)].
The vowel space centroid was derived from the mean
centroids of all occurrences of /a/, /i/, and /u/ for each
speaker*vocalization type (song/speech). Vowel variability
within each category was estimated as the distance of each
vowel to the centroid of the vowel category (e.g., the cen-
troid of /a/, if the vowel is an accented or unaccented exem-
plar of /a/), also computed for each speaker*vocalization
type. Vowel formant values were automatically checked
against standard values for /a, i, u/ in German female speak-
ers (Patzold and Simpson, 1997) and excluded when largely
deviating from those values (see Table II for the thresholds).
Thresholds were set to allow for larger variations in vowel
realization compared to expected formant values in read
speech. Data of one mother had to be discarded due to too
many formant measurement errors in sung performances (up
to 53% of erroneous values for the infant-directed lullaby),
which seem partly linked to the increased difficulty of auto-
mated formant estimation with higher fO as outlined by
Maurer (2016). Another 1037 vowels were discarded in the
remaining participants due to gross formant detection error.
After these corrections, the final number of vowels for statis-
tical analysis was 14.519 (for the final data set, see supple-
mental materials’ ).

D. Statistical analysis

In recent years, Linear Mixed-effects models (LMM)
became one of the most widespread statistical approach to
acoustic data analysis (Baayen et al., 2008). However, there
are a number of limitations to this family of frequentist anal-
yses. First, fitting LMMs to data with complex random
structure often leads to computational issues with models
failing to converge. Second, when using analyses in which
data interpretation is based on significance values, large
datasets give rise to the problem that even small effects tend
to be highly significant. In contrast, a Bayesian modeling
approach allows one to circumvent both problems
(Nicenboim and Vasishth, 2016). Moreover, the a posteriori
probability of effects given by Bayesian models is particu-
larly adequate to investigate a hierarchy of effects as
intended in the present study.

TABLE II. Cutoff-values (min./max, in Hz) for formants (F1, F2) used for
excluding vowels from the analysis.

F1 F2
Vowel Minimum Maximum Minimum Maximum
i/ 200 700 1500 3200
fa/ 400 1100 900 2200
Ju/ 200 750 450 1700
4432  J. Acoust. Soc. Am. 150 (6), December 2021

Bayesian linear regression models were fit to each
acoustic measure [using sTAN, Carpenter et al. (2017)], after
converting them to z-scores (for detailed information see
supplemental materials'). The dependent variables vowel
duration and variability, fO and variability as well as vowel
clarity and variability were predicted by interactive stimula-
tion (arousing vs calm), vocalization type (spoken vs sung),
and infant-directness (ID vs non-ID). Mother was used as a
grouping variable. The models comprised only main effects
as the aim was (1) to identify the hierarchy of effects on the
acoustics that are strongest for each predictor, and (2) to
keep the models comparable across the acoustic variables.
Following Jones and Brandt (2019), in the absence of a
strong prior assumption, a generic weakly informative prior
was set across f§ parameters (a normal distribution centered
on zero with a SD of 1), this prior being overwhelmed by
the large number of observations (849 to 2894 observations
for each combination of predictors). A sensitivity analysis
(see supplemental materiel') revealed that adjusting the
prior had indeed almost no effect on the posterior probabili-
ties. Models fitted successfully for each dependent variable,
as shown by R-hat statistics not deviating from the ideal
value 1 by more than 0.1, a number of effective samples
higher than 40 [5 times the number of chains after splitting,
following Gelman et al. (2013)], and visual inspection of
the trace plots.

lll. RESULTS

Figure 1 shows the probability distribution (mean f val-
ues and lower and upper bounds of credible intervals) for
each predictor and dependent variable. An estimate (f
value) of zero indicates a null probability for the effect,
while a larger estimate indicates a larger probability.
Although such results cannot be interpreted in the same way
as those obtained in frequentist analyses [see Vasishth et al.
(2018), for a discussion], a parallel can be drawn between
the interpretation of results in Bayesian analyses: a probabil-
ity distribution with 95% credible interval not overlapping
the zero value can be regarded as reflecting a relevant effect,
while compared mean values of estimates may be inter-
preted as reflecting effect sizes with the standard deviation
of the variable of interest as unit.

The estimated effects (see Fig. 1 for mean f§ values and
lower and upper bounds of credible intervals) show that
interactive stimulation (arousing vs calm interactions) and
vocalization type (sung vs spoken) of codified mother-infant
interactions had clear acoustic signatures. As expected, the
estimated effect of interactive stimulation, that is, arousing
vs calm interactions, is strongest in the pitch dimension
(height and variability of f0). As can be seen in Fig. 2, both
fO and variability are considerably higher in arousing than
calm interactions. We also found a smaller effect of dura-
tional variability of vowels, being more important in calm
than in arousing interactions. Importantly, the estimated
effects on vowel durations or vowel clarity/variability are
negligible in this dimension. Vocalization type, that is dif-
ferences between speaking and singing, has its most
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important impact on vowel duration (speech < song, Fig. 2).
Yet, duration variability (speech >song), fO variability
(speech >song), and fO (speech >song) as well as vowel
variability (speech > song) are also affected, although to a
smaller extent. Again, estimated effects on vowel clarity
were close to zero. Infant-directedness (ID vs AD), in con-
trast, was less characteristic in its acoustic signature. All
acoustic variables except vowel clarity were likely to vary
as a function of infant-directedness in this sample (with
all variables having the same direction ID > non-ID, see
Fig. 2). However, the magnitude of these estimated effects
is modest to small relative to the magnitudes of estimates
found for the other communicative dimensions.

IV. DISCUSSION

The present findings reveal prominent acoustic traits
(““acoustic signatures”) for the communicative dimensions
interactive stimulation and vocalization type in codified
mother-infant interactions. The pitch dimension—pitch
height (f0) and variability—very clearly shapes the acoustic
signature of interactive stimulation, measured as a contrast
between calm and arousing codified interactions. This find-
ing is in line with previous results on ID spontaneous speech
showing an important contribution of variations in the pitch
dimension to convey parental messages [e.g., warning,
appraisal, soothing etc., Fernald (1989) and Papousek et al.
(1991)]. Higher f0, more arousing in both music and speech,
is also associated with happiness and positive emotions of
the speaker [e.g., Juslin and Laukka (2003)]. Infants are par-
ticularly attracted to and aroused by “happy sounds” con-
veyed by pitch and spectral information (Cirelli et al., 2020;
Corbeil et al., 2013). They are also sensitive to the matching
between pitch information and the associated interactive
context. For example, infants aged 6 to 7months prefer
lower-pitched versions of lullabies compared to higher-
pitched versions of playsongs (Tsang and Conrad, 2010;
Volkova et al., 2006), although they generally prefer higher
pitch in speech and song (Trainor and Zacharias, 1998).
Hence, at 6 months, infants could learn from codified inter-
actions that pitch form is highly correlated with paralinguis-
tic functions, thereby laying the grounds for later learning of
affective and social dimensions of communication.

Durational variability of vowels was an additional, but
less important trait in the acoustic signature of interactive
stimulation, with a smaller effect compared to the fO dimen-
sion. However, this effect and its somewhat surprising direc-
tionality (calm > arousing) may have been biased by the less
rhythmically regular and thereby, more temporally variable
structure of calm story reading compared to the metrical or
musical beat structure of the other performances.

Vowel duration played an eminent role in the acoustic
signature of vocalization type, speech, or song, during the
interaction. Long vowel durations are characteristic of sing-
ing, as melodic and rhythmic structure is encoded in the
most sonorant portions of the signal (Sundberg, 1987,
1989). Consequently, durational vowel-consonant ratios are
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very indicative of speech vs song [5:1 in song, 1:1 in speech,
estimations by Eckardt (1999)]. Variability of vowel dura-
tions as well as fO and variability appeared as additional
traits characterizing the acoustic signatures of speech vs
song. However, these latter effects and their directions (in
the present German corpus: speech >song) should be
regarded with caution as they are prone to heavily vary with
cultural and individual use of the codified interaction. For
example, cross-linguistically, the variability of vowel dura-
tions in speech utterances depends on the language-specific
prosody, the interlocutor and speech context (Cohen Priva
et al., 2017; Klatt, 1976; Nolan and Asu, 2009). The vari-
ability of sung vowel durations and fO is influenced by the
metrical and melodic musical structure which is culture-
dependent [e.g., London (2004) and Soley and Hannon
(2010)]. Although across continents, anthropologists and lit-
erary researchers have suggested that the codified repertoire
of children is (at least metrically) less variable across cul-
tures than the adult repertoire (Chukovsky, 1963; Burling,
1966), large-scale cross-linguistic and cross—cultural
research [e.g., Mehr ef al. (2018)] might shed light on the
actual amount of this variability.

As to spectral properties, it is noteworthy that vowel
variability, but not clarity of focal vowels (/a, i, u/) was
likely to be predicted by vocalization type (speech > song)
in codified mother-infant interactions, although the effect
was small. When comparing sung (classical Western oper-
atic singing) and spoken vowels in non-ID interactions,
smaller vowel space and reduced intra-category variability
have been pointed out as typical of singing (Bradley, 2018),
along other special features, such as “the singer’s formant”
and reduced vowel intelligibility [e.g., Sundberg (1982)].
Singing styles approaching spoken language, however, may
attenuate some of these differences [e.g., vowel intelligibil-
ity, Sundberg and Romedahl (2009)]. The present findings
suggest that, similarly, ID singing may provide more stable
realizations of spectral vowel properties than ID speech, a
feature that could be further investigated in its function for
lexical and phonological processing in infants.

Overall, the results on the type of vocalization, speech,
or song, indicate that codified interactions could help infants
to learn that acoustic temporal structure is prominently asso-
ciated with the function of marking differences between spo-
ken and musical registers. This may also foster their capacity
to interpret finer temporal differences in linguistic and musi-
cal subregisters, such as linguistic styles [clear speech vs col-
loquial speech, Ferguson and Kewley-Port (2007)] or musical
styles [e.g., Savage et al. (2015)], later on.

Finally, infant-directedness affected more acoustic
parameters in codified interactions than the other dimen-
sions under investigation and no dominant acoustic parame-
ter could be pointed out. However, similar traits were
present as reported for spontaneous ID speech, like longer
vowel durations/slower tempo [e.g., Fernald er al. (1989)
and McMurray et al. (2013)], higher temporal variability
[e.g., Falk and Kello (2017)], higher and more variable fO
(Fernald et al., 1989; Fernald and Kuhl, 1987), and more
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within-category vowel variability (Martin et al., 2015;
McMurray et al., 2013) compared to AD speech. This result
suggests that the acoustic signature of infant-directedness is
potentially multidimensional, that is, the infant may recover this
information from multiple cues. The relatively small estimates
for the effects may derive from the fact that codified interac-
tions are per se infant-directed, that is, stemming from a histori-
cally and culturally evolved infant-directed repertoire, even
when performed for an adult. Therefore, the AD performances
in the present corpus may not have been as markedly different
as are ID vs AD speech during spontaneous conversations [e.g.,
Sulpizio et al. (2018) and Weirich and Simpson (2019)].

Interestingly, unlike previous studies comparing ID and
AD speech [e.g., Kalashnikova and Burnham (2018) and
Weirich and Simpson (2019)], there were no vowel clarity
effects (i.e., more distant vowels /a/, /i/, /u/) in the present cor-
pus. There are a number of possible reasons for this. First, the
ritualized and highly repeated character of dyadic codified inter-
actions [see Vlismas et al. (2013) for similar results] may par-
ticularly enhance reciprocal engagement of mother and infant
in the interaction (Margulis 2014), but not linguistic meaning or
form. Second, low infant age (6 month) in the study could have
counteracted clarity effects as vowel clarity in mothers’ speech
seems to peak during infants’ critical phase for word learning
which starts around a year of life [e.g., Bernstein Ratner (1984);
see also Han et al. (2018), for similar results on lexical tone].
Third, even in spontaneous ID interactions, vowel clarity effects
are not always reported across studies, although they are more
replicated with focal vowels (/a, i, u/) than with other vowels
(Burnham et al, 2002; Kuhl et al., 1997, McMurray et al.,
2013). For example, Cristia and Seidl (2014) and Martin et al.
(2015) found higher within-category variability of vowels, but
not larger vowel space. The exact function of vowel spectral
properties in ID speech are currently debated. McMurray et al.
(2013) suggest that greater variability of vowels in ID speech
could help infants to establish a phonetic/phonological system.
Some researchers underline that higher ID vowel clarity derives
from articulatory properties of ID speech and hence, link the
function to speech production (Best et al., 2016; Kalashnikova
et al.,2017), while others highlight the perceptual role of acous-
tically clearer vowels for infant language learners (Fernald,
2000; Kuhl et al., 1997).

V. CONCLUSION

The present study shows that specific acoustic traits of cod-
ified mother-infant interactions highlight specific form-function
associations, in particular linked to socio-affective information
and differences between musical and linguistic repertoire. On
these grounds, future studies could pinpoint differential benefits
of codified vs spontaneous interactions in early childcare, and
examine, cross-culturally, how infants actually extract form-
function associations from codified interactions.
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