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LISTENERS USUALLY HAVE NO DIFFICULTIES TELLING

the difference between speech and song. Yet when a spoken
phrase is repeated several times, they often report a percep-
tual transformation that turns speech into song. There is
a great deal of variability in the perception of the speech-to-
song illusion (STS). It may result partly from linguistic prop-
erties of spoken phrases and be partly due to the individual
processing difference of listeners exposed to STS. To date,
existing evidence is insufficient to predict who is most likely
to experience the transformation, and which sentences may
be more conducive to the transformation once spoken
repeatedly. The present study investigates these questions
with French and English listeners, testing the hypothesis
that the transformation is achieved by means of functional
re-evaluation of phrasal prosody during repetition. Such
prosodic re-analysis places demands on the phonological
structure of sentences and language proficiency of listeners.
Two experiments show that STS is facilitated in high-
sonority sentences and in listeners’ non-native languages
and support the hypothesis that STS involves a switch
between musical and linguistic perception modes.
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T HE SPEECH-TO-SONG ILLUSION IS A PERCEP-

tual phenomenon in which a spoken phrase
shifts to being heard as sung by listeners after

a series of repetitions. This transformation indicates
a tight link between language and music and has
attracted much research attention since its discovery
(Deutsch, 1995). The transformation usually occurs
during the third repetition of the phrase (Falk, Rathcke,
& Dalla Bella, 2014) and is accompanied by a change in
activation of the involved neural circuits that process
spoken vs. musical signals, recruiting a network of areas
associated with pitch extraction, song production, and
auditory-motor integration (Tierney, Dick, Deutsch, &
Sereno, 2012). Once transformed, the phrase often con-
tinues to be perceived as song, and its musical melody
cannot be ‘‘unheard’’ (Groenveld, Burgoyne, & Sada-
kata, 2020). Despite having been the focus of several
recent studies (e.g., Graber, Simchy-Gross, & Margulis,
2017; Groenveld et al., 2020; Jaisin, Suphanchaimat,
Figueroa, & Warren, 2016; Tierney, Patel, & Breen,
2018), STS still poses many questions.

Not all sentences are equally likely to transform into
song when repeated (Falk et al., 2014; Tierney et al.,
2012). Tierney et al. (2012) report having discovered
24 high- and 24 low-transforming phrases after an
exhaustive search through two large online libraries of
audiobooks available in English. Alternatively,
hypothesis-driven manipulations of spoken phrases
provide an experimental tool for studying which prop-
erties induce or hinder STS (Falk et al., 2014). Both
methodological approaches have so far provided con-
verging evidence for the crucial role of the fundamental
frequency (F0) that corresponds to the perceived pitch
of the speaker’s voice. Accordingly, stable local F0-
trajectories provide a strong acoustic scaffold for STS
to arise while increased local F0-dynamics tend to sup-
press the effect (see Figure 1). The importance of pitch
track stability has recently been replicated with both
naturally produced (Tierney et al., 2018) as well as
manipulated (Groenveld et al., 2020) stimuli, and seems
to be one of the most robust acoustic cues to STS. In
contrast, pitch intervals that represent prominent scalar
intervals in Western music (Cross, Howell, & West,
1983; Krumhansl, 2000) do not promote STS (Falk
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et al., 2014, Figure 1). This finding has also been repli-
cated in recent research (Tierney et al., 2018) and sug-
gests that a musical melody can be established
perceptually, without any strong acoustic cueing. As
Deutsch, Henthorn, and Lapidis (2011, p. 2246) pro-
pose, ‘‘during the process of repetition, the pitches
forming the phrase increase in perceptual salience,
and . . . in addition they are perceptually distorted as
to conform to a tonal melody.’’ In support of this view,
a recent study provided evidence that STS reduced the
awareness and memory for pitch while enhancing those
for duration (Graber et al., 2017).

Rhythmic properties of spoken sentences can also
influence STS, although features conducive to the trans-
formation do not rely on any regularity or isochrony
either within the phrase (Falk et al., 2014, Tierney et al.,
2018) or across repetitions (Falk et al., 2014; Margulis,
Simchy-Gross, & Black, 2015). Instead, low-level timing
variability that arises from groupings of speech sounds
into intervocalic (as opposed to syllabic) intervals
increases the likelihood and the ease of STS, possibly
by supporting a metrical interpretation of spoken
phrases (Falk et al., 2014).

We have previously hypothesized that repetition leads
to a functional re-evaluation of prosodic properties of
repeated spoken phrases whereby aspects relevant to
speech processing dominate the perception initially and

gradually give way to the percept of a musical melody
(Falk et al., 2014). Similarly, Margulis (2013) proposes
that a speech perception mode switches to a music per-
ception mode during repetitions. Castro, Mendoza,
Tampke, and Vitevitch (2018) explain STS within a con-
nectionist framework of the node structure theory
(MacKay, 1987) and assume that once lexical nodes
have been saturated, the activation spreads to neighbor-
ing nodes that encode sound properties. Such theoreti-
cally grounded accounts of STS make it possible to
advance the current understanding of STS in a hypoth-
esis-driven way, which is the approach taken by the
present study.

Research to date has primarily focused on acoustic
properties of phrases that are looped to induce STS. It
remains an open question whether or not an informed
prediction can be made for a sentence based on its
phonological properties alone. Assuming that STS relies
on a melodic reanalysis (Deutsch et al., 2011, Falk et al.,
2014) that is enhanced by high pitch (Groenveld et al.,
2020; Vanden Bosch der Nederlanden, Hannon, & Sny-
der, 2015), the phonological structure of spoken phrases
ought to promote the transmission of pitch information
in order to facilitate the transformation. Crucially, pitch
perception hinges on the presence of vocal fold vibra-
tion and its acoustic correlate, the fundamental fre-
quency (F0, Ladefoged & Maddieson, 1996), which

FIGURE 1. Waveform (top panel) and F0-trajectories (bottom panel) of the English sentence “Ducks can fly” spoken by a female. Stable F0-

trajectories (shown in grey) indicate pitch patterns cueing STS, dynamic F0-trajectories (shown in black) indicate pitch patterns supressing STS.

Grey squares highlight intervals of missing voicing and F0-information during the production of [d], [k s k], [f] (in “Ducks can fly”), in contrast to

sonorant sections during the production of [^], [ en], [laI].
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shape the phonological sonority of sentences. Sonority
is often viewed on a scale from high (open vowels like
[æ a Q]) to low (voiceless oral stops like [p t k], Clem-
ents, 1990) which primarily reflects the presence of
vocal fold vibration and also the degree of vocal tract
opening during sound production. Low-sonority pho-
nemes (especially voiceless stops and fricatives) pose
difficulties to the transmission of pitch information (see
Figure 1). Hence, sentences with a high number of such
phonemes (like voiceless stops or fricatives) are unlikely
to support STS. In contrast, sentences containing many
high-sonority sounds (like vowels, nasals, and approx-
imants) can be expected to facilitate pitch extraction
from the acoustic signal and thus promote STS. The
Sonority Hypothesis is tested in Experiment 1.

Most of the unexplained variability in the perception
of STS is, however, individual. Listeners’ musicianship
does not effectively predict the individual experience of
STS as the effect can occur regardless of musical train-
ing (Vanden Bosch der Nederlanden et al. 2015), though
musical aptitude tends to slightly increase the likelihood
of STS arising (Falk et al., 2014). Listeners’ musical
aptitude may activate memory representations of music
melodies and thus facilitate prosodic reanalysis of spo-
ken phrases, though it is unlikely to play a role during
the linguistic processing of phrases prior to such
reanalysis.

Linguistic processing is evidently involved in the
transformation. STS prevails in listeners whose native
language uses pitch post-lexically (Deutsch et al., 2011;
Falk et al., 2014; Jaisin et al., 2016) and is weak, if at all
present, in listeners whose native language has lexical
tone (Jaisin et al., 2016). Listeners of tonal languages
tend to encode pitch patterns as having linguistic mean-
ing (Bidelman & Lee, 2015), which may hinder their
ability to experience STS in both their native (L1) and
non-native (L2) language, even if the latter does not
have lexical tone (Jaisin et al., 2016).

When exposed to repetitions of phrases from an unfa-
miliar language, listeners tend to have a stronger STS-
experience in phrases that sound most foreign (or less
pronounceable) to them, in contrast to phrases that
sound more familiar (or more easily pronounceable,
Margulis et al., 2015). This finding speaks to our main
hypothesis that the linguistic processor ought to disen-
gage from the analysis of incoming speech in order for
the phrasal melody to be processed as singing (Castro
et al., 2018; Falk et al., 2014; Margulis, 2013). Linguistic
analyses are known to be cognitively costly, especially in
L2 (Pérez, Hansen, & Bajo, 2019). Accordingly, the Pro-
ficiency Hypothesis of this study assumes that listeners’
L2-mastery moderates their STS-experience in L2. The

transformation is expected to be reduced in listeners
with limited L2-skills who might take longer to extract
the linguistic meaning of phrases, thus delaying or
blocking prosodic reanalysis. In contrast, STS is likely
to be facilitated in listeners with extensive L2-skills who
will be faster at extracting linguistic meaning of sen-
tences and reanalyzing phrasal prosody as singing. This
hypothesis is tested in Experiment 2.

Method

MATERIALS

Twelve sentences were created in English and French
(see Supplementary Materials at mp.ucpress.edu). The
sentences varied in sonority (high vs. low) and were
matched in length (4–14 syllables) and syntactic struc-
ture. A native female speaker of each target language
read the sentences, paying attention to matching speech
rate and pitch patterns across the two sonority
conditions.

To ensure the success of the intended manipulation
and to ascertain cross-linguistic comparability of the
materials, we calculated a mean sonority index for each
sentence. Each phoneme’s location on the phonological
sonority scale (Clements, 1990) was numerically coded
from minimally 0 (for voiceless plosives) to maximally 9
(for open vowels). A mean sonority index was then
calculated as an average across all sentence phonemes.
Subsequent Welch two-sample t-tests revealed that the
manipulation was successful in both French and English
(see Table 1), whereas the subtle cross-linguistic differ-
ences between the high-sonority sets (5.62 in French vs.
5.88 in English) and low-sonority sets (3.93 in French
vs. 4.30 in English) were not significant. Table 1 further
compares how the intended sonority manipulation
translates into its main acoustic-phonetic correlate, the
duration of sonorous sounds (measured as percentage
of the total sentence duration, % sonorous). On average,
the duration of sounds that can carry pitch information
made up less than half of the total duration of low-
sonority sentences and about 80% of the total duration
of high-sonority sentences.

To control for other factors that might influence STS,
speech rate (in syllables per second) and pitch variabil-
ity (in semitones) were also compared between the
high-sonority and low-sonority sentences. To avoid
measuring microprosodic F0-influences caused by
intervening consonants (e.g., Hanson, 2009) and to
ensure comparability across the two languages and
sonority conditions, pitch variability was measured as
the pitch change happening within a vowel. Accord-
ingly, F0 was measured at 25% and 75% of each vowel.
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The F0-difference between the two measurement points
was converted into semitones. Neither of the two extra-
neous factors (speech rate, pitch variability) differed
significantly between the two experimental conditions
(see Table 1) or between the two languages.

The test sentences were looped with eight repetitions,
each separated by a 400 ms pause. Experiment 1 tested
12 stimuli in each language whereas Experiment 2
tested a subset of 10 stimuli per language (five sentences
in each sonority condition).

PROCEDURE

English listeners were tested at the University of Kent,
French listeners at the Sorbonne Nouvelle Paris-3 Uni-
versity. Prior to the experiment, participants filled in an
online questionnaire that screened for amusia. The
questionnaire further asked about music training, ongo-
ing and past musical activities, the number of played
instruments (which included singing) and the age at
which participants took up musical training. A compos-
ite score of listener musicality (cf. Šturm & Voĺın, 2016)
was derived from the questionnaire data.

Once in the lab, participants first rated individual test
sentences on a scale from 1 (clearly speech) to 8 (clearly
song). These ratings established the baseline of per-
ceived song-likeness of the experimental stimuli prior
to repetition (Falk et al., 2014, Groenveld et al., 2020)
and were followed by a series of distractor tasks. The
session ended with the STS-test in which participants
were instructed to listen to the looped sentences and
indicate their STS-perception by pressing a button when
(and only when) they experienced the transformation.
They had to wait until the end of the loop without
pressing any buttons if they did not experience STS.
At the end of each trial, participants evaluated how
song-like the sentence sounded to them after the last
repetition, using the same Likert scale as in the baseline
test. Experiment 1 was monolinguistic, i.e., listeners
rated sentences in their native language only. Experi-
ment 2 was cross-linguistic, i.e., listeners rated sentences

in their L1 and L2. The order of the two languages was
counterbalanced across individual sessions. A pair of
good-quality headphones was used to present auditory
stimuli. The study received approval from the ethics
committee of the University of Kent. All listeners gave
informed consent to participate in this research and
received a small payment.

The above procedure obtained data on the speed and
the likelihood of STS (Falk et al., 2014), along with the
baseline and the strength of STS (e.g., Groenveld et al.,
2020; Tierney et al., 2018).

LISTENERS

Forty English and forty French listeners (59 female,
mean age ¼ 27, range ¼ 18–43) participated in Exper-
iment 1. A different group of forty English and forty
French listeners (59 female, mean age ¼ 23, range ¼
18–42) took part in Experiment 2. Foreign language
skills of the second group varied, and were assessed
using a free online test by Education First. The test
resulted in scores ranging from 0 (absolute beginner,
A1) up to 100 (native-like proficiency, C2), according
to the European Framework of Reference (Council of
Europe, 2011). Attention was paid to counterbalancing
the levels of L2-proficiency across the two language
groups as far as possible, though, overall, L2-English
skills in our French sample (mean: 88.9, or C2) were
significantly higher, t ¼ 10.44, df ¼ 77.8, p < .001, than
L2-French skills in our English sample (mean¼ 43.8, or
B1). Nevertheless, individual variability spanned all pro-
ficiency levels in both groups of listeners.

Participants’ musicality scores varied from 1 (no
musical training received) to 26 (high levels of music
training and experience), but there were no professional
musicians among the four groups.

Results

Figure 2 displays ‘‘song-like’’ ratings of all sentences at
baseline vs. after the exposure to repetitions in the two

TABLE 1. Measurements of Phonological and Phonetic Properties of the Test Sentences

English French

High-
sonority

Low-
sonority t-tests

High-
sonority

Low-
sonority t-tests

Sonority index 6.05 4.30 t(7.9) ¼ 6.6, p < .001 5.62 3.93 t(9.9) ¼ 8.1, p < .001
% Sonorous 84.88 46.44 t(9.8) ¼ 8.5,

p < .001
79.64 39.17 t(7.5) ¼ 8.8, p < .001

Speech rate (syll/sec) 5.19 4.55 t(10.0) ¼ 1.3, ns 5.54 4.91 t(9.5) ¼ 1.2, ns
Pitch variability (st) 0.24 0.39 t(84.8) ¼ 0.8, ns 0.11 0.39 t(84.2) ¼ 1.6, ns
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experiments. Baseline responses clustered tightly at the
lower end of the given 8-point scale. Wilcoxon signed-
rank test confirmed that the test sentences were rated
significantly more song-like after repetitions; Experi-
ment 1: V ¼ 0, p < .001; Experiment 2: V ¼ 0, p < .001.

A series of mixed-effects models were subsequently
fitted to the collected STS-data, to investigate:

• the likelihood of STS: the dependent variable mea-
sures whether or not (1/0) participants reported
having perceived the transformation during repe-
titions of a given test sentence (binomial models),

• the speed of STS: the dependent variable reflects
the repetition cycle (1–8) during which partici-
pants reported the transformation (ordinal
models),

• the strength of STS: the dependent variable is
based on the song-like ratings (1–8) of test sen-
tences, collected after repetitions (ordinal
models).

Listener and sentence were fitted as crossed random
intercepts (Baayen, Davidson, & Bates, 2008). To con-
trol for variability in sentence length (Rowland, Kasdan,
& Poeppel, 2019) and listener musicality (Falk et al.,
2014), the number of syllables per sentence and indi-
vidual musicality scores were included as covariates.
The former was significant in some models, the latter

in none. An RMarkdown file (see Supplementary Mate-
rials) outlines the analyses conducted in Rstudio (run-
ning R-version 4.0.3).

EXPERIMENT 1

Experiment 1 tested the effect of sentence sonority
(high/low) on STS. Best-fit models showed the pre-
dicted effect on STS-likelihood, x2(1) ¼ 7.40, p < .01,
speed, x2(1)¼ 8.90, p < .01, and strength, x2(1)¼ 11.82,
p < .001, of the transformation. High-sonority sentences
were more likely to transform, z ¼ 2.95, p < .01
(Figure 3-A), and they did so one repetition cycle earlier
than low-sonority sentences, z ¼ 3.19, p < .01
(Figure 3-B). Moreover, high-sonority sentences
sounded significantly more song-like after repetitions
than their low-sonority counterparts, z ¼ 3.92, p < .001
(Figure 3-C). We also checked the role of sentence lan-
guage on STS-perception, but the French and the English
listeners of Experiment 1 did not differ in any responses
to the experimental stimuli of their native language.

EXPERIMENT 2

Experiment 2 investigated the role of the listener’s lan-
guage proficiency on their STS-experience. That is, the
main factors of interest were language of the looped
sentence (L1/L2), L2-score of the listener (numerical,
0–100), and their interaction. The best-fit model

FIGURE 2. Ratings of test sentences on the 8-point scale (1 ¼ clearly speech, 8 ¼ clearly song) after a single exposure (baseline) vs. after eight

repetitions. Responses from (mono-linguistic) Experiment 1 are plotted in panel A, those from (cross-linguistic) Experiment 2 in panel B.
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revealed a main effect of language of the sentence on its
STS-likelihood, x2(1) ¼ 22.33, p < .001. Accordingly, all
participants of the present study reported approxi-
mately 15% more transformations in their L2 than in
their L1, z¼ 4.78, p < .001 (Figure 4-A). This effect held
regardless of participants’ proficiency levels in their L2.
As far as the speed of STS was concerned, both language
of the sentence, x2(1)¼ 17.01, p < .001, and L2-scores of
the listener, x2(1) ¼ 6.19, p < .05, affected the

transformation (though not in interaction). Overall,
STS was reported one repetition cycle earlier in L2 than
in L1, z ¼ 4.12, p < .001 (Figure 4-B) but was generally
delayed in participants with a higher level of L2-skills,
z ¼ 2.51, p < .05 (Figure 5-A). In contrast, the strength
of STS was significantly affected by the sentence lan-
guage and listener L2-score in interaction, x2(1) ¼ 8.90,
p < .01. The effect was rather subtle: while listeners with
lower L2-scores tended to give slightly higher song-like

FIGURE 3. Effect of phrase sonority on the likelihood (A), speed (B, cycles 1-8) and strength (C) of STS. Responses after repetition (C) were collected

on an 8-point Likert scale from 1 (clearly speech) to 8 (clearly song).

FIGURE 4 Main effect of language on the likelihood (A), speed (B, cycles 1-8) and strength (C) of STS. Responses after repetition (C) were collected on

an 8-point Likert scale from 1 (clearly speech) to 8 (clearly song).
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ratings to L2-sentences after repetition, z ¼ 1.88,
p¼ 0.06 (Figure 5-C), their L2-proficiency did not mat-
ter for the song-like ratings of L1-sentences, z¼ 0.12, ns
(Figure 5-B). Overall, sentences heard in the listener’s
L2 were rated as sounding more song-like after repeti-
tion, z ¼ 12.91, p < .001 (Figure 4-C).

Discussion

The aim of the present study was to test two aspects of
a hypothesized mechanism that might give rise to STS
(Castro et al., 2018; Falk et al., 2014; Margulis, 2013).
The Sonority Hypothesis made a prediction for the sus-
ceptibility of sentences to STS based on their phonolog-
ical structure while the Proficiency Hypothesis made
a prediction for the listener’s susceptibility to the trans-
formation based on L2-language skills.

THE SONORITY HYPOTHESIS

Given the importance of pitch in STS (Falk et al., 2014;
Groenveld et al., 2020; Tierney et al., 2018), the Sonority
Hypothesis of Experiment 1 predicted that high-
sonority sentences would facilitate the extraction of
pitch information and thus promote STS. In contrast,
low-sonority sentences were expected to inhibit STS as
a general repetition effect that is known to bias percep-
tion of any acoustic signal toward the interpretation of
musical structure (Rowland et al., 2019). These predic-
tions were borne out in Experiment 1. On average, high-
sonority sentences were twice as likely to induce STS

when repeated, transformed one cycle earlier and
sounded more song-like after repetition than their
low-sonority counterparts of similar length and syntac-
tic structure.

Highly sonorous sounds including vowels, nasals, and
approximants have the ability to carry a tune because
they are produced with an unobstructed vocal tract and
a continuous vocal fold vibration that create resonance
necessary for singing (cf. Ladefoged & Johnson, 2015).
Hence, the facilitating effect of sonority for the percep-
tion of STS could stem from aspects of sound produc-
tion that also play a crucial role in pitch transmission
and perception (Ladefoged & Maddieson, 1996). How-
ever, phrases consisting exclusively of sonorants do not
frequently occur in natural language (Rathcke, 2017),
while in singing, sonority of underlying linguistic repre-
sentations is typically enhanced by lengthening of
vowels, i.e., by changing timing characteristics of speech
acoustics (Eckardt, 1999). A deeper understanding of
STS-foundations and mechanisms will benefit from
future studies into potential interactions between tim-
bral quality of varied sentence sonority (Clements,
1990) and the phonetics of resulting pitch patterns (cf.
Allen & Oxenham, 2014; Caruso & Balaban, 2014).

Importantly, the likelihood of STS in high-sonority
sentences of the present study was not as high as estab-
lished in our previous research with pitch-manipulated
stimuli (50% in Experiment 1 vs. 80% in Falk et al.,
2014). This result suggests that properties of phrasal
melody may be more central to the transformation (cf.

FIGURE 5. Effect of the listener’s L2-proficiency on the speed (panel A, cycles 1-8) and the strength of STS in their native (panel B) and non-native

(panel C) language. Responses after repetition (shown in panels B and C) were collected on an 8-point Likert scale from 1 (clearly speech) to 8 (clearly

song). Note that L2-proficiency scores are centred around the group mean (0).
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Deutsch et al., 2011; Falk et al., 2014; Tierney et al., 2018;
Vanden Bosch der Nederlanden et al., 2015) than the
phonological sonority that supports melodic reanalysis
but does not actively promote a melodic interpretation.
Nevertheless, Experiment 1 highlights that not all
sentence-related features that facilitate STS derive from
the acoustic make-up of the sentences.

THE PROFICIENCY HYPOTHESIS

Experiment 2 investigated STS-perception in 80 native
listeners of English and French whose L2-ability in the
other language varied from basic to advanced. According
to the Proficiency Hypothesis, low-proficiency listeners
would have a reduced STS-experience in their L2, since
syntactic parsing, lexical access, and lexico-syntactic inte-
gration were delayed in L2 compared to L1 (Dufour &
Kroll, 1995; Kilborn, 1992; Wartenburger et al., 2003).
However, Experiment 2 shows that, overall, experiencing
repeated speech in L2 strengthens STS and induces the
transformation earlier and more frequently, regardless of
listeners’ L2-proficiency. The role of proficiency appears
marginal in comparison, though listeners with fewer L2-
skills do report higher STS-strength in their L2.

The Proficiency Hypothesis was based on the
assumption that listeners would equally extract the
linguistic message in their L1 and L2. However,
L2-processing is not strictly automatic even in fluent
bilinguals (Favreau & Segalowitz, 1983; Segalowitz,
Segalowitz, & Wood, 1998). Given that Experiment 2
did not include assessment of L2-comprehension, there
is a possibility that listeners (particularly those with low
proficiency) did not attempt to process L2-phrases lin-
guistically and experienced them as if they were spoken
in a completely unfamiliar language, thus demonstrat-
ing the previously observed foreign-language effect
(Jaisin et al., 2016; Margulis et al., 2015). Task demands
are known to affect processing and comprehension of
L2-speech (Kilborn, 1992; Tan & Foltz, 2020) as well as
the perception and action more generally (Memelink &
Hommel, 2007), and might have led listeners of this
study to exclusively attend to the sound structure of the
stimuli, bypassing other sources of linguistic informa-
tion in the acoustic signal or engaging in a shallow
encoding of L2 sentences. Experiment 2 will thus benefit
from a replication design to include tests of lexico-
syntactic integration and access in L2-listeners.

Overall, the results of Experiment 2 can be reconciled
with the explanation that non-native listeners (espe-
cially those who have little experience in their L2) might
be able to forego linguistic meaning extraction, focusing
exclusively on the prosody of L2-messages and thus
experiencing a stronger STS-effect. Importantly, the

present findings indicate that the linguistic background
of listeners contributes to STS more than their musical
background, highlighting the need to further examine
the involvement of linguistic processing in STS.

General Discussion and Conclusion

The present study enriched existing evidence on the
workings of STS by documenting the effects of phono-
logical sonority in the looped sentence and listener pro-
ficiency in the language of the spoken stimulus. These
findings highlight the importance of pitch transmission
for STS, regardless of the exact acoustic implementation
of pitch relationships that have been extensively studied
before (Deutsch et al., 2011; Falk et al., 2014; Tierney
et al., 2018), and indicate a mediating effect of the lan-
guage processor in STS (cf. Castro et al., 2018; Falk et al.,
2014; Margulis, 2013).

At first glance, a strong involvement of linguistic pro-
cessing in STS seems at odds with the idea of a ‘‘repeti-
tion-to-music’’ effect put forward in the studies
demonstrating that a similar perceptual transformation
can be induced in looped environmental sounds (Row-
land et al., 2019, Simchy-Gross & Margulis, 2018).
Indeed, sounds of water drops, ice cracks, wind noise
or bee buzz and chicken cackle can be perceived as
musical when repeated. The perceiver in all of these
experiments is, however, the human listener whose pro-
cessing of linguistic vs. environmental sounds or voca-
lisations of other species is known to differ (Belin,
Zatorre, Lafaille, Ahad, & Pike, 2000; Scott, Blank,
Rosen, & Wise, 2000), potentially driven by the ability
to categorise and assign specific meanings to the acous-
tic signal (Leech, Holt, Devlin, & Dick, 2009). The lack
of semantic processing has been discussed as one of the
main reasons why jumbling of segments in looped non-
speech excerpts does not block the transformation to
music in a similar way to how jumbling of syllables in
looped sentences blocks STS (Simchy-Gross & Margu-
lis, 2018). Assuming that lexico-syntactic processing in
a listener’s non-native language is shallow and task-
dependent (Favreau & Segalowitz, 1983; Kilborn,
1992; Segalowitz et al., 1998; Tan & Foltz 2020), the
L2-effects observed in Experiment 2 corroborate the
idea that meaningfulness of the acoustic signal mediates
the transformation. The ‘‘repetition-to-music’’ effect is
therefore likely to be stronger in non-speech than in
speech, as results of a previous study suggest (Rowland
et al., 2019), though pertinent evidence for the meaning
hypothesis is yet to be provided.

The role of acoustic properties of pitch in STS has been
repeatedly discussed and well documented (Deutsch
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et al., 2011; Falk et al., 2014; Tierney et al., 2018), while
there are doubts that it matters as much for the ‘‘repeti-
tion-to-music’’ effect that might rely more heavily upon
rhythmic processing (Rowland et al., 2019). Crucially, all
environmental sounds that have been tested in previous
research (Rowland et al., 2019, Simchy-Gross & Margu-
lis, 2018) seem to have had measurable (or inducible)
fundamental frequency. This resonates with the sonority
effect in Experiment 1, demonstrating that an increased
amount of transmittable pitch information fosters the
transformation. The generalizability of the ‘‘repetition-
to-music’’ effect is therefore yet to be attested with sounds
whose acoustic properties are missing the fundamental
and/or inhibit its induction like the noise of a radio static
or rustling autumnal tree leaves.

To conclude, the present study demonstrates that STS
links language to music in complex ways, involving
a switch between musical and linguistic perception
modes (Castro et al., 2018; Falk et al., 2014; Margulis,
2013) that is moderated by the linguistic (rather than
musical, cf. Vanden Bosch der Nederlanden et al., 2015)
background of listeners. The results have broader

implications for the future study of the ‘‘repetition-to-
music’’ effect as a general phenomenon that biases per-
ception of acoustic signals toward the interpretation of
musical structure upon repetition.
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